Development of a mHealth Post-Stroke Home Exercise Program with Remote Monitoring and Intervention

Date Added
May 21st, 2024
PRO Number
Pro00137156
Researcher
Na Jin Seo

List of Studies


Keywords
Exercise, Movement Disorders, Nervous System, Physical Therapy, Rehabilitation Studies, Stroke, Stroke Recovery
Summary

Adherence to home exercise is important to achieve upper limb recovery after stroke. However, adherence is typically low. Therefore, a new home exercise program with an Apple Watch and iPhone app was created to improve adherence to upper limb exercises for stroke survivors at home. Participants will come to our lab to experience the new home exercise program. Participants who opt for home use will bring the device home to try the new home exercise program at home. The purpose of this study is for researchers to examine usability and feasibility of participants using the new home exercise program.

Institution
MUSC
Recruitment Contact
Ja'Quann Gallant
843-792-0162
gallantj@musc.edu

A randomized controlled trial of smell training and trigeminal nerve stimulation in the treatment of COVID-related persistent smell loss

Date Added
May 2nd, 2023
PRO Number
Pro00127790
Researcher
Bernadette Cortese

List of Studies


Keywords
Coronavirus, Nervous System, Nose, Psychiatry
Summary

Persistent smell loss that can include diminished or distorted smell function is a common symptom of long COVID syndrome. There are limited treatment options for long COVID-related smell loss. Our study aims to determine the efficacy of two at-home treatments, smell training and non-invasive trigeminal nerve stimulation. This study requires participants to conduct daily at-home treatment sessions, attend three in-person study visits at the MUSC Department of Psychiatry and Behavioral Sciences, and complete electronic questionnaires over the 12-week trial, and again at the six-month timepoint. Participants in this trial may benefit directly with an improvement in sense of smell. However, participation may also help society more generally, as this study will provide new information about long COVID-related smell loss and its treatment.

Substudy

Long COVID syndrome has been associated with cognitive impairment and may be related to affected emotional regulation. This study will use a electroencephalography (EEG) to examine how the body and brain responses to emotional cues in participants who are currently undergoing treatment for COVID-related smell loss. Participation will aid in the understanding of how emotional processing in long COVID is impacted by treatment for related smell loss.

Institution
MUSC
Recruitment Contact
Mary Clare Koebel
843-790-3449
scent-4-longcovid@musc.edu

Investigating the effect of the oral microbiome on cognition in HIV-infected chronic cannabis users

Date Added
February 9th, 2023
PRO Number
Pro00117243
Researcher
Wei Jiang

List of Studies


Keywords
Brain, Dental, HIV / AIDS, Memory Loss, Mental Health, Nervous System, Psychiatry, Substance Use
Summary

This study will examine how marijuana use can affect oral bacteria and brain health in people with HIV and without HIV. Early studies show that marijuana users have more oral bacteria than non-marijuana users. The increase in bacteria is believed to affect brain health. Participation in the study will be one visit. The visit will take approximately 120 minutes.

Institution
MUSC
Recruitment Contact
Wei Jiang
843-876-2457
jianw@musc.edu

EMG-Controlled Game to Retrain Upper Extremity Muscle Activation Patterns Following Stroke

Date Added
November 22nd, 2022
PRO Number
Pro00124158
Researcher
Na Jin Seo

List of Studies


Keywords
Exercise, Movement Disorders, Muscle, Nervous System, Physical Therapy, Rehabilitation Studies, Stroke, Stroke Recovery
Summary

The purpose of this study is to develop and test if upper limb task practice and muscle activity training improve upper limb function in stroke survivors. Participants will be asked to come to the laboratory 3 times a week for 6 weeks to receive upper limb task practice and/or muscle activity training. Participants will also come to the laboratory for additional 3 visits for assessments of upper extremity function. The total duration of the study will be 2.5 months.

Institution
MUSC
Recruitment Contact
Kristen Coupland
843-792-7685
coupland@musc.edu

Targeted spinal cord plasticity for alleviating SCI-related neuropathic pain

Date Added
April 5th, 2022
PRO Number
Pro00118771
Researcher
Aiko Thompson

List of Studies


Keywords
Central Nervous System, Nerve, Nervous System, Pain, Rehabilitation Studies, Spinal Cord
Summary

The purpose of this study is to examine the relationship between reflexes in the leg and the presence of neuropathic pain. The researchers are recruiting 30 individuals with spinal cord injury (SCI) total, 15 individuals with neuropathic pain due to SCI and 15 individuals without neuropathic pain. For this portion of the study, there are 2 visits. The first visit will examine cutaneous reflexes in the leg. During the second visit, the study team will assess sensation in the leg and administer questionnaires about pain, functioning, and quality of life.

The purpose of the second part of the study is to examine the effect of reflex training in the leg to decrease neuropathic pain. For this, the researchers are recruiting 15 individuals with neuropathic pain due to spinal cord injury to participate in the reflex training procedure. The study involves approximately 50 visits with a total study duration of about 6.5 months (3 months for baseline and training phases followed by 1 month and 3 month follow-up visits).

Institution
MUSC
Recruitment Contact
Blair Dellenbach
843-792-6313
stecb@musc.edu

Can increasing motor evoked potential size improve upper extremity motor function in individuals with incomplete spinal cord injury?

Date Added
September 7th, 2021
PRO Number
Pro00113108
Researcher
Blair Dellenbach

List of Studies

Keywords
Central Nervous System, Nervous System, Rehabilitation Studies, Spinal Cord
Summary

The purpose of this study is to examine the relationship between common clinical assessments and measurements of the function of brain-spinal cord-muscle connections. For examining brain-to-muscle pathways, we use a transcranial magnetic stimulator. This stimulator produces a magnetic field for a very short period of time and indirectly stimulates brain cells with little or no discomfort. We hope that the results of this training study will help us in developing therapy strategies for individuals, better understanding clinical assessments, and understanding treatments that aim to improve function recovery in people with SCI.

There are 2 aims for this study. The purpose of the first is to examine the relationship between assessments commonly used in therapy and doctor's offices (clinical assessments) and measurements of the function of brain-spinal cord- muscle connections. This will require 2 visits, and each visit will last approximately 2 hours.

The purpose of the second aim is to examine the effects of training on brain-spinal cord-muscle response. This will require 30 visits, and each visit will last approximately 1.5 hours.

Institution
MUSC
Recruitment Contact
Blair Dellenbach
843-792-6313
stecb@musc.edu

Characterization of physiological changes induced through motor-evoked potential conditioning in people with spinal cord injury

Date Added
December 3rd, 2019
PRO Number
Pro00091457
Researcher
Aiko Thompson

List of Studies


Keywords
Central Nervous System, Nervous System, Rehabilitation Studies, Spinal Cord
Summary

We are currently recruiting volunteers who are interested in participating in a brain-spinal cord-muscle response training study that aims to better understand the changes that take place in the nervous system as a result of this type of training. After spinal cord injury, brain-to-muscle connections are often interrupted. Because these connections are important in movement control, when they are not working well, movements may be disturbed. Researchers have found that people can learn to strengthen these connections through training. Strengthening these connections may be able to improve movement control and recovery after injuries.

Research participants will be asked to stand, sit, and walk during the study sessions. Electrodes are placed on the skin over leg muscles for monitoring muscle activity. For examining brain-to-muscle connections, we use transcranial magnetic stimulation. The stimulation is applied over the head and will indirectly stimulate brain cells with little or no discomfort.

Participation in this study requires approximately three sessions per week for four months, followed by two to three sessions over another three months. Each session lasts approximately 1 hour. Participants will receive a mileage reimbursement.

Institution
MUSC
Recruitment Contact
Blair Dellenbach
843-792-6313
stecb@musc.edu

Concomitant sensory stimulation during therapy to enhance hand functional recovery post stroke

Date Added
August 6th, 2019
PRO Number
Pro00090790
Researcher
Na Jin Seo

List of Studies


Keywords
Aging, Exercise, Movement Disorders, Nervous System, Physical Therapy, Rehabilitation Studies, Stroke, Stroke Recovery
Summary

Hand disability after stroke has a profound negative impact on functional ability and independence. Hand therapy may be augmented with sensory stimulation for better outcomes. We have developed a novel sensory stimulation - unfelt vibration applied via a wristwatch. Participants will receive this novel stimulation with hand task practice therapy or therapy only to determine if use of this stimulation is better for recovery.

Institution
MUSC
Recruitment Contact
Kristen Coupland
8437927685
coupland@musc.edu

Direct measurement of motor cortical responses to transcranial direct current stimulation

Date Added
May 15th, 2018
PRO Number
Pro00073545
Researcher
Nathan Rowland

List of Studies


Keywords
Brain, Central Nervous System, Movement Disorders, Muscle, Nerve, Nervous System, Parkinsons, Surgery
Summary

Transcranial direct current stimulation (tDCS) has shown the potential to improve symptoms in patients with motor deficits, however its effects have not been consistent in randomized studies to date, limiting widespread adoption of this technology. A critical gap in our knowledge is a detailed understanding of how tDCS affects motor areas in the brain. We propose using tDCS while recording directly from motor cortex using subdural electrocorticography (sECoG) in patients undergoing deep brain stimulation surgery. We expect this novel approach to broaden our understanding of tDCS application and possibly lead to therapeutic advances in this population.

Institution
MUSC
Recruitment Contact
Ayesha Vohra
843-792-6210
vohra@musc.edu

Operant down-conditioning of the soleus H-reflex in spastic hemiparesis after stroke

Date Added
October 6th, 2015
PRO Number
Pro00048307
Researcher
Aiko Thompson

List of Studies


Keywords
Nervous System, Rehabilitation Studies, Stroke
Summary

Reflexes are important parts of our movements. When reflexes are not working well, movements are clumsy or even impossible. After stroke, reflex responses may change. Researchers have found that people can learn to increase or decrease a reflex response with training. Recently, we have found that rats and people with partial spinal cord injuries can walk better after they are trained to change a spinal cord reflex. Thus, learning to change a reflex response may help people recover after a nervous system injury. In this study, we aim to examine whether learning to change a spinal reflex through operant conditioning training can improve movement function recovery in people after stroke or other damage to the nervous system.

Institution
MUSC
Recruitment Contact
Blair Dellenbach
843-792-6313
stecb@musc.edu



-- OR --