Assessment of cortical network connectivity in individuals with impaired walking coordination post-stroke

Date Added
July 6th, 2021
PRO Number
Pro00111026
Researcher
Steven Kautz

List of Studies


Keywords
Muscle, Non-interventional, Rehabilitation Studies, Stroke Recovery
Summary

Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation method often used to assess connectivity between the brain and specific muscles. This research study is aimed at finding the changes in the manner brain communicates with leg muscles post-stroke and its effects on movement coordination during walking.

Institution
MUSC
Recruitment Contact
Shraddha Srivastava
8437926165
srivasts@musc.edu

Hospital-Based Cluster Stratified Randomization Control Trial: Determination of Best MCGR Implementation Strategy using Distraction Intervals

Date Added
March 17th, 2020
PRO Number
Pro00092719
Researcher
Robert Murphy

List of Studies


Keywords
Bone, Muscle
Summary

This study aims to study children with Early Onset Scoliosis who undergo implantations of a magnetic growing rod, to see if any differences that exist between lengthening the rod every 6 weeks or 4 months.

Institution
MUSC
Recruitment Contact
Robert Murphy
843-792-9542
murphyr@musc.edu

Direct measurement of motor cortical responses to transcranial direct current stimulation

Date Added
May 15th, 2018
PRO Number
Pro00073545
Researcher
Nathan Rowland

List of Studies


Keywords
Brain, Central Nervous System, Movement Disorders, Muscle, Nerve, Nervous System, Parkinsons, Surgery
Summary

Transcranial direct current stimulation (tDCS) has shown the potential to improve symptoms in patients with motor deficits, however its effects have not been consistent in randomized studies to date, limiting widespread adoption of this technology. A critical gap in our knowledge is a detailed understanding of how tDCS affects motor areas in the brain. We propose using tDCS while recording directly from motor cortex using subdural electrocorticography (sECoG) in patients undergoing deep brain stimulation surgery. We expect this novel approach to broaden our understanding of tDCS application and possibly lead to therapeutic advances in this population.

Institution
MUSC
Recruitment Contact
Ayesha Vohra
843-792-6210
vohra@musc.edu

Assessment of Contributions to Impaired Walking after Neurologic Injury

Date Added
January 15th, 2014
PRO Number
Pro00028941
Researcher
Chris Gregory

List of Studies