Newborns who are born premature or infants who suffer brain injury are at risk for motor problems. The common motor skills of reaching and grasping that infants have to learn can be weaker on one side of the body, depending on the site of the brain injury. These skills are routinely practiced with an occupational therapist once or twice a week, to help the infant strengthen these skills. A high intensity therapy program of constraint induced movement therapy (CIMT) may be available for the infant, but it takes from 40-120 hours total treatment time for most infants to improve their motor skills.
Transcutaneous auricular vagus nerve stimulation (taVNS) stimulates a branch of a major nerve by the ear, called the vagus nerve, that may help improve your child's ability to learn motor skills. CIMT involves placing a soft mitt constraint on the stronger arm and hand while encouraging your child to use the weaker arm and hand during intensive therapy sessions. By using both CIMT and the nerve stimulation together, we hope your child's movement skills will improve more than with therapy alone.
The purpose of this study is to evaluate the safety and effectiveness of taVNS to improve motor skills when paired with the minimal amount of CIMT and whether a measure of the strength of the brain circuit to the arm and hand muscles can tell us how well a child may respond to this therapy.
The purpose of this study is to learn more about late-onset epilepsy of unknown etiology (LOEU), which is defined as an onset of seizure activity in late life (age 60 or above) without a clear neurological cause. That is, many older adults will experience seizures due to neurological conditions such as stroke, brain injury, tumor, or infection. However, other individuals will also develop seizures with no identified cause.
Participation entails a single study visit lasting 2-3 hours including a fasting blood draw, completion of standardized cognitive testing, and several questionnaires. The goals of the study include to examine blood markers that can help us to better understand the condition including dementia risk, and how these markers may impact the clinical presentation of the condition. No interventions/treatments are included with this study.
Individuals with chronic cervical spinal cord injury will complete a 10-week training protocol where they receive non-invasive brain stimulation and feedback on the size of the corresponding muscle response (wrist extensor). We will assess the impact of the brain stimulation training on 1) the brain-to-spinal cord-to-muscle connection and 2) motor functions of the arm and hand. Also, brain and spine magnetic resonance imaging will be collected before and after the training. The imaging measurements will tell us about how spinal damage, brain function, and brain structure relate to motor presentation and the response to the training.
Sometimes, it is necessary to re-learn a previously learned movement behavior, for example, a bad posture during the golf drive or while playing the piano. Unlearning or relearning an intensively trained behavior is particularly important if the behavior is hampering recovery, for example, in chronic pain or after a stroke. With this study, we experimentally test the brain mechanisms that control the change of pre-existing stable memories of a motor skill with electroencephalography (EEG). We will then use non-invasive brain stimulation to modulate these brain mechanisms and test if it is possible to change the pre-existing motor memory and the learning of a new motor skill.
The purpose of this study is to examine the relationship between reflexes in the leg and the presence of neuropathic pain. The researchers are recruiting 30 individuals with spinal cord injury (SCI) total, 15 individuals with neuropathic pain due to SCI and 15 individuals without neuropathic pain. For this portion of the study, there are 2 visits. The first visit will examine cutaneous reflexes in the leg. During the second visit, the study team will assess sensation in the leg and administer questionnaires about pain, functioning, and quality of life.
The purpose of the second part of the study is to examine the effect of reflex training in the leg to decrease neuropathic pain. For this, the researchers are recruiting 15 individuals with neuropathic pain due to spinal cord injury to participate in the reflex training procedure. The study involves approximately 50 visits with a total study duration of about 6.5 months (3 months for baseline and training phases followed by 1 month and 3 month follow-up visits).
The study team is recruiting 25 adults with spasticity due to chronic stroke for a 4 day study. In people with chronic stroke, one of the most common and disabling problems is spasticity (increased muscle tone or muscle stiffness). The purpose of this research study is to examine effects of dry needling on the nervous system (pathways between the muscle, spinal cord, and brain) in people with spasticity due to chronic stroke. Dry needling is a procedure in which a thin, stainless steel needle is inserted into the skin to produce a muscle twitch response. It is intended to release a knot in a person's muscle and relieve pain.
The total study duration is 3 visits over 4 days. The first visit will last about 3 hours, and the second and third visits will last about 1.5 hours. Dry needling will take place on the first visit only. During each visit the participant will be asked to participate in examinations of reflexes (muscle responses to non-invasive nerve stimulation) and leg function.
The purpose of this study is to examine the relationship between common clinical assessments and measurements of the function of brain-spinal cord-muscle connections. For examining brain-to-muscle pathways, we use a transcranial magnetic stimulator. This stimulator produces a magnetic field for a very short period of time and indirectly stimulates brain cells with little or no discomfort. We hope that the results of this training study will help us in developing therapy strategies for individuals, better understanding clinical assessments, and understanding treatments that aim to improve function recovery in people with SCI.
There are 2 aims for this study. The purpose of the first is to examine the relationship between assessments commonly used in therapy and doctor's offices (clinical assessments) and measurements of the function of brain-spinal cord- muscle connections. This will require 2 visits, and each visit will last approximately 2 hours.
The purpose of the second aim is to examine the effects of training on brain-spinal cord-muscle response. This will require 30 visits, and each visit will last approximately 1.5 hours.
This study is for patients with recurrent/progressive medulloblastoma, which is a type of childhood brain tumor. Participants in this study will receive intravenous (IV, into the veins) bevacizumab and intrathecal (into the spinal fluid) or intraventricular (into the fluid surrounding the brain) etoposide and cytarabine in combination with five oral (taken by mouth) chemotherapy drugs as a possible treatment for recurrent/progressive medulloblastoma. Total study duration is about 1 year and depending on how well a participant tolerates the medications and the response of the disease, the patient may continue the treatment after the first year.
The purpose of the first portion of this study is to gather feedback from clinicians on the usability of the current system and procedure, so the researchers can make reflex training more useful and usable for improving recovery after spinal cord injury or other nervous system injuries and diseases. The researchers are recruiting 20 therapists who have been actively practicing physical medicine and 30 adults with no known neurological conditions to test system usability and the reflex operant conditioning protocol. For this portion of the study, there are 5 visits. We will also recruit 15 adults with no neurological injuries, 15 adults with neuropathic pain, and 15 adults with non-neuropathic pain to participate in one visit to provide feedback on sensation caused by stimulating electrodes.
The purpose of the second part of the study is to validate the capacity of the system to change the size of the targeted reflex. For this the researchers are recruiting 25 individuals with chronic incomplete SCI who have spasticity in the leg to participate in the reflex training procedure. The study involves approximately 45 visits with a total study duration of about 6 months.
The study team is recruiting 20 adults with spasticity due to chronic stroke and 20 adults with no neurological injuries for a 4 day study over 1 week. In people with chronic stroke, one of the most common and disabling problems is spasticity (increased muscle tone or muscle stiffness). The purpose of this research study is to examine effects of dry needling on the nervous system (pathways between the muscle, spinal cord, and brain) in people with spasticity due to chronic stroke. Dry needling is a procedure in which a thin, stainless steel needle is inserted into your skin to produce a muscle twitch response. It is intended to release a knot in your muscle and relieve pain.
The total study duration is 4 visits over one week. The first visit will take about 1.5 hours, during which the study team will determine the best electrode placement and create a removeable cast of your arm or leg to aid in placing electrodes in the next visits. The second visit will take about 3 hours, during which dry needling will take place, and the fourth and fifth visits will take about 1.5 hour. During all visits you will be asked to participate in examinations of reflexes (muscle responses to non-invasive nerve stimulation) and arm/leg function.