Direct measurement of motor cortical responses to transcranial direct current stimulation Save

Date Added
May 15th, 2018
PRO Number
Pro00073545
Researcher
Nathan Rowland

Silhouette
Keywords
Brain, Central Nervous System, Movement Disorders, Muscle, Nerve, Nervous System, Parkinsons, Surgery
Summary

Transcranial direct current stimulation (tDCS) has shown the potential to improve symptoms in patients with Parkinson's disease, however its effects have not been consistent in randomized studies to date, limiting widespread adoption of this technology. A critical gap in our knowledge is a detailed understanding of how tDCS affects motor areas in the brain. We propose using tDCS while recording directly from motor cortex using subdural electrocorticography (sECoG) in Parkinson's patients undergoing deep brain stimulation surgery. We expect this novel approach to broaden our understanding of tDCS application in Parkinson's disease and possibly lead to therapeutic advances in this population.

Institution
MUSC
Recruitment Contact
Sanicqua Robinson Smalls
843-792-8553
robinsst@musc.edu

Transcranial magnetic stimulation for modulation of postural control in progressive supranuclear palsy Save

Date Added
April 17th, 2018
PRO Number
Pro00076691
Researcher
Marian Dale

Silhouette
Keywords
Central Nervous System, Geriatrics, Movement Disorders, Nervous System, Rare Diseases, Rehabilitation Studies
Summary

This research studies the effects of brain stimulation (transcranial magnetic stimulation, or "TMS") on balance in progressive supranuclear palsy (PSP). The purpose of this research is to look for improvements in balance when subjects are on a tilting platform after stimulating the brain with a magnetic wand held over the scalp over an area at the back of the brain called the cerebellum. Participants will receive both active and inactive stimulation during the course of the study. There is no surgery involved. There are also optional portions of the study that include functional magnetic resonance imaging (fMRIs) and speaking samples.

Institution
MUSC
Recruitment Contact
Shonna Jenkins
843-792-9115
jenkisho@musc.edu

Brain functional connectivity & sensory stimulation-enhanced therapy post stroke Save

Date Added
January 2nd, 2018
PRO Number
Pro00074041
Researcher
Na jin Seo

Silhouette
Keywords
Aging, Central Nervous System, Movement Disorders, Muscle, Nerve, Nervous System, Physical Therapy, Rehabilitation Studies, Stroke, Stroke Recovery
Summary

After stroke, it is common for individuals to experience hand impairment. This deficit can severely restrict functional ability and independence. Recovery of hand function following stroke is highly variable. In this study, we will use brain imaging to predict individual response to treatment after only one therapy session. Survivors of stroke will receive upper extremity therapy with a novel intervention using a smart watch. The device applies imperceptible vibration to the wrist and has been shown to immediately improve chronic stroke survivors' touch sensation and hand dexterity in preliminary studies.

Institution
MUSC
Recruitment Contact
Amanda Vatinno
(847) 715-8031
vatinno@musc.edu

Neural Determinants of Age-Related Change in Auditory-Visual Speech Processing Save

Date Added
September 24th, 2017
PRO Number
Pro00070971
Researcher
James Dias

Silhouette
Keywords
Aging, Brain, Central Nervous System, Ears, Healthy Volunteer Studies, Hearing, Language, Minorities, Vision/ Eye
Summary

Older adults typically have trouble identifying the speech they hear, especially in noisy environments. Fortunately, compared to younger adults, older adults are better able to compensate for difficulties identifying the speech they hear by recruiting the visual system. However, the extent to which older adults can benefit from visual input, and how this influence relates to age-related changes in brain structure and function, have not been thoroughly investigated. The general purpose of this study is to determine how age-related changes in brain structure and function affect how well people hear and see. This study seeks participants with normal hearing to mild hearing loss, who also have normal or corrected-to-normal vision.

Institution
MUSC
Recruitment Contact
James Dias
(843) 792-3921
diasj@musc.edu

TheraBracelet: The first and only wearable to instantly improve stroke hand function Save

Date Added
January 3rd, 2017
PRO Number
Pro00062471
Researcher
Na jin Seo

Silhouette
Keywords
Aging, Central Nervous System, Movement Disorders, Muscle, Nerve, Nervous System, Physical Therapy, Rehabilitation Studies, Stroke, Stroke Recovery
Summary

Post-stroke hand impairment is highly prevalent and severely restricts functional ability and independence. Yet, there is no assistive device to help hand function at home, every day, during activities of daily living. This study addresses this gap by providing an innovative technology. The "TheraBracelet" is a wristband applying imperceptible white-noise vibration to skin. TheraBracelet is efficacious, as it has been shown to immediately improve chronic stroke survivors' touch sensation and hand dexterity in preliminary studies. TheraBracelet is affordable by using only a low-cost vibrator. TheraBracelet is also translational, because a vibrator strategically placed at the wrist does not interfere with dexterous finger motions, and it is low-risk by involving only imperceptible vibration on skin. These practicalities assure easy adoption in home environment for large impact on sensorimotor impairment. This study is to determine the feasibility and safety of using this assistive device all day every day for a month during daily activity, and to determine if TheraBracelet's instant effects are sustained during prolonged use. This objective will be accomplished in a double-blinded, randomized, controlled, crossover design study. Feasibility (compliance of using the device everyday) and safety will be assessed for the treatment condition compared to the control condition (wearing the device without vibration) through weekly evaluations. In addition, TheraBracelet's instant benefits in improving hand function will be assessed weekly. Persistence of TheraBracelet's instant benefits across all weekly evaluations will support durability (i.e. desensitization to vibration does not occur during extended daily use over a one-month period). This project is expected to lead to an assistive wristband that increases hand function during activities of daily living, thus increasing independence and quality of life and reducing caregiver burden for a large number of stroke survivors with hand impairment.

Institution
MUSC
Recruitment Contact
Andrew Fortune
843-792-8970
fortunea@musc.edu

Change_preferences

-- OR --

Create_login