Theta Burst Stimulation as a tool to decrease drinking in treatment-seeking alcohol users Save

Date Added
October 1st, 2019
PRO Number
Pro00092058
Researcher
Colleen Hanlon

List of Studies


Profiles_link
Keywords
Alcohol, Brain, Drug Studies, Psychiatry, Substance Use
Summary

There is growing interest in the utilization of transcranial magnetic stimulation (TMS) as a novel, non-pharmacologic approach to decreasing alcohol use among treatment-seeking individuals with Alcohol Use Disorder (AUD). The results of this study will be used to determine which of the 2 proposed TMS strategies has a larger effect on drinking behavior (% days abstinent, % heavy drinking days) as well as alcohol cue-reactivity in a 4 month period. These data will pave the way for TMS to be used as an innovative, new treatment option for individuals with AUD.

Institution
MUSC
Recruitment Contact
Julia Imperatore
843-792-5560
imperato@musc.edu

Trigeminal Nerve Stimulation (TNS) To Modulate Odor Sensitivity Save

Date Added
October 1st, 2019
PRO Number
Pro00091615
Researcher
Bashar Badran

List of Studies


Profiles_link
Keywords
Brain, Healthy Volunteer Studies
Summary

Trigeminal nerve stimulation (TNS) a form of nerve stimulation that is a safe and noninvasive way to activate the trigeminal nerve in the forehead. By stimulating the trigeminal nerve, we may be able to reduce sensitivity to various smells that are specifically sensed by the trigeminal nerve. This may help develop a new treatment for individuals that are over-sensitive to specific smells. The tools explored in this study are 1) Trigeminal Nerve Stimulation (TNS) and 2) Transcranial Direct Current Stimulation (tDCS). Both tools are non-invasive meaning that it does not involve any surgical procedures. TNS is a form of nerve stimulation that uses pulses of electricity delivered to stickers attached to the forehead. tDCS is a form of brain stimulation that uses sponges that are attached to your forehead which deliver a small, safe electrical current that activates your brain.

Institution
MUSC
Recruitment Contact
Sarah Huffman
843-792-8672
huffmans@musc.edu

tDCS Combined with a Brief Cognitive Intervention to Reduce Perioperative Pain and Opioid Requirements in Veterans Save

Date Added
October 1st, 2019
PRO Number
Pro00091450
Researcher
Jeffrey Borckardt

List of Studies


Profiles_link
Keywords
Brain, Joint, Mental Health, Military, Pain, Psychiatry, Surgery
Summary

The purpose of this study is to determine whether a new medical technology can help reduce post-operative total knee or hip pain when combined with a Cognitive-Behavioral intervention (CBI).

This new medical technology, is called transcranial direct current stimulation (tDCS), it uses a very small amount of electricity to temporarily stimulate specific areas of the brain thought to be involved in pain reduction. The electrical current passes through the skin, scalp, hair, and skull and requires no additional medication, sedation, or needles.

This study will investigate the effects of tDCS, the Cognitive-Behavioral (CB) intervention and their combination on pain among veterans following total knee arthroplasty (TKA) or total hip arthroplasty (THA). You may benefit in the form of decreased pain and opioid requirements following your knee or hip replacement surgery. However, benefit is only likely if you are randomized to one of the 3 (out of 4) groups.

This study hopes to determine the effects of these interventions and their combined effect on post-operative pain, opioid use and functioning during the 48-hour post-operative period following a total knee or hip replacement.

Institution
MUSC
Recruitment Contact
Georgia Mappin
(843) 789-7104
georgia.mappin@va.gov

Aging Brain Cohort Study-Longitudinal Save

Date Added
August 23rd, 2019
PRO Number
Pro00091014
Researcher
Julius Fridriksson

List of Studies

Keywords
Aging, Brain, Healthy Volunteer Studies
Summary

This study will examine the behaviors and brains of adults between the ages of 60 and 80. Our goal is to better understand changes associated with the aging process. This includes potential changes in behavior/cognition as well as potential biomarkers for these changes (i.e. biological data like DNA, brain scans or brain activity that are related to these changes). Participants in the study will complete a number of tests that measure their cognitive, language, and sensory abilities. We will collect information about their brains using magnetic resonance imaging (MRI) and electroencephalography (EEG) and we will collect information about their genes using DNA extracted from blood samples. We will examine and compare the relationship between brain and behavior at 2 time points for the same 200 individuals. All data collected in this study will be stored in the Aging Brain Cohort repository study.

Institution
USC
Recruitment Contact
Briana Davis
803 576-8420
abcstudy@mailbox.sc.edu

Effect of transcranial direct current stimulation on cortical oscillations during a virtual reality task Save

Date Added
August 20th, 2019
PRO Number
Pro00087153
Researcher
Nathan Rowland

List of Studies

Silhouette
Keywords
Brain, Parkinsons, Stroke, Stroke Recovery
Summary

Transcranial direct current stimulation (tDCS) has shown the potential to improve symptoms in patients with movement deficits, such as Parkinson's disease and chronic stroke. However, the effects of tDCS have so far not been proven on a wider scale due to lack of knowledge regarding exactly how tDCS works. This has limited the adoption of this potentially useful therapy for patients with Parkinson's disease, chronic stroke and other conditions affecting movement. We think that by studying the effect of tDCS on brain signals while subjects perform a virtual reality task that requires integration of visual and motor information we can separate out exactly what occurs in the brain when tDCS is turned on. We expect this approach to broaden our understanding of tDCS application in conditions affecting movement and possibly lead to therapeutic advances in this population.

Institution
MUSC
Recruitment Contact
Scott Hutchison
(843)792-2712
hutchis@musc.edu

Combining Transcutaneous Auricular Vagus Nerve Stimulation (taVNS) with Transcranial Magnetic Stimulation (TMS) to Enhance Cortical Excitability Save

Date Added
August 6th, 2019
PRO Number
Pro00089851
Researcher
Bashar Badran

List of Studies


Profiles_link
Keywords
Brain, Healthy Volunteer Studies
Summary

This study explores the use of ear stimulation paired with magnetic brain stimulation to increase enhance plasticity in the motor area of the brain. In short - we are pairing 2 forms of brain stimulation and this study will have 5 different experimental visits during which healthy individuals will receive either real or placebo ear stimulation combined with real or placebo brain stimulation at the MUSC institute of Psychiatry. Motor outcomes will be recorded to determine if the combination of ear and brain stimulation increases cortical excitability.

Institution
MUSC
Recruitment Contact
Sean Thompson
843-792-8672
thompsea@musc.edu

NMDA receptor-dependent synaptic plasticity of repetitive transcranial magnetic stimulation (rTMS) after-effects through pharmacologic augmentation. Save

Date Added
February 5th, 2019
PRO Number
Pro00081755
Researcher
Joshua Brown

List of Studies

Keywords
Brain, Healthy Volunteer Studies, Psychiatry
Summary

Transcranial magnetic stimulation (TMS), a non-invasive form of brain stimulation, produces lasting changes in the brain to treat depression and other brain disorders. Emphasis on clinical indications and efficacy has far outpaced a mechanistic understanding of how these changes are produced. In this study, we propose use of the pharmacologic agents d-cycloserine, demonstrated to be safe for human use, to probe in the molecular mechanism of long-term potentiation, the cellular basis of learning and memory. We will measure whether this agent can respectively strengthen the potentiation produced by TMS by looking at the amplitude of motor response (called motor evoked potential or MEP) of the thumb (through electromyography, or EMG).
A better understanding of its mechanism of action promises to optimize our ability to use TMS, and potentially improve duration and degree of response.

Institution
MUSC
Recruitment Contact
Joshua Brown
843-792-3516
brojoshu@musc.edu

Title: Rapid Reversal of CNS-Depressant Drug Effect prior to Brain Death Determination Investigators: Sameh Hanna, MD, Justin Atwood, MD Institution: Palmetto Health-University of South Carolina Medical Group, Division of Pulmonary, Critical Care and Sleep Medicine, Columbia, SC Save

Date Added
December 11th, 2018
PRO Number
Pro00077995
Researcher
Sameh Hanna

List of Studies

Keywords
Brain, Central Nervous System, Nervous System
Summary

Prospective trial with enrollment of 30 patients in various intensive care units at Palmetto Health Richland from January 1st 2019 to June 30th 2020. If patients had undergone targeted temperature management (33-36 degrees Celsius for 24 hours via intravascular or surface control methods, with or without sedation or neuromuscular blockade, followed by rewarming actively or passively at 0.25-0.5 degrees per hour over 8-12 hours to 37 degrees) investigators will wait 24 hours after rewarming prior to testing. End point is to evaluate if pharmacological reversal agents would result in improved GCS scores or return of cerebral or brainstem functions in some comatose patients, which will be considered a positive test result.

Institution
Palmetto
Recruitment Contact
Sameh Hanna
8643443439
sameh.hanna@palmettohealth.org

Age-related changes in neuroplasticity impede recovery in post-stroke depression: a novel exercise and brain stimulation paradigm to prime neuroplastic potential Save

Date Added
December 4th, 2018
PRO Number
Pro00083079
Researcher
Ryan Ross

List of Studies

Keywords
Brain, Depression, Exercise, Stroke, Stroke Recovery
Summary

Stroke affects millions of Americans and is a leading cause of disability. In addition to chronic disability, many survivors experience depressive symptoms such as reductions in mood and motivation. Post-stroke depression (PSD) is associated with poorer recovery from stroke, increased health care costs and higher mortality. Additionally, PSD may interfere with the recovery of the nervous system after stroke. Effective treatment options for PSD are limited and often come with side effects, highlighting the need for alternative treatment approaches. Aerobic exercise (AEx) has positive effects on the nervous system, is a powerful anti-depressant, and has limited side effects, yet remains underutilized in stroke survivors with PSD. This study will examine the short-term effects of AEx on the nervous system in stroke survivors with and without PSD. The results will serve as a foundation for the study of AEx as a treatment for PSD.

Institution
MUSC
Recruitment Contact
Ryan Ross
843-792-3477
rossre@musc.edu

Connectome Biomarkers for Predicting Alzheimer's Risk in Traumatic Brain Injury Save

Date Added
July 17th, 2018
PRO Number
Pro00077915
Researcher
Jane Joseph

List of Studies


Profiles_link
Keywords
Aging, Alzheimers, Brain, Dementia, Healthy Volunteer Studies, Memory Loss, Military
Summary

Traumatic Brain Injury is a risk factor for Alzheimer's Disease and other dementias. This study will use neuroimaging in Veterans and civilians with a history of TBI or without TBI to understand whether some of the brain changes that occur in Alzheimer's Disease are present in people with a history of TBI. The study is recruiting male and female military Veterans or civilians with or without TBI between the ages of 30 and 65.

Institution
MUSC
Recruitment Contact
Laura Lohnes
843-792-7709
lohnes@musc.edu

Change_preferences

-- OR --

Create_login