Hypermobile EDS and hypermobile spectrum disorder (collectively referred to as hEDS) are estimated to affect 1 in 500 individuals worldwide. This study will enroll hEDS patients to test a new ear stimulation system to help reduce symptoms associated with hEDS, including pain and GI problems. Ear stimulation will be applied twice daily, for four weeks at home, and we will collect electronic behavioral data to track progress.
Early evidence suggests the benefits of post-stroke motor rehabilitation may be enhanced by applying electrical stimulation to the ear. This study aims to test the new approach of pairing ear stimulation with motor rehabilitation in the home setting in stroke survivors with upper limb motor function deficits.
Hypermobile EDS and hypermobile spectrum disorder (collectively referred to as hEDS) are estimated to affect 1 in 500 individuals worldwide. hEDS patients have limited treatment options for their numerous symptoms that impact the quality of life. This clinical trial tests a new ear stimulation method in hEDS patients to determine if it may improve quality of life.
In this research study, healthy participants will receive ear stimulation during brain imaging. Ear stimulation will involve the study team applying small electrodes to the outer part of your left ear and administering small amounts of electrical stimulation that may cause you to feel a "tickling" sensation on your ear. Participants will receive four, 8-min ear stimulation sessions in the scanner, and the order of the sessions is randomly assigned to you.
Knowledge gained from this study will help us better understand how stimulation of nerves in your ear turns on different parts of the brain.
This study is attempting to understand whether 30-minutes of a new ear stimulation technology can reduce pain in healthy individuals. Participants in this trial will attend two experimental visits, during which they will receive ear stimulation during the intravenous administration (I.V.) of either saline or naloxone. During each visit, the amount of thermal pain participants can tolerate will be determined before and after ear stimulation. Brain scans will also be collected before and after ear stimulation. Each visit should last about 3 hours.
The purpose of this study is to determine whether a new medical technology can help reduce post-operative total knee or hip pain when combined with a Cognitive-Behavioral intervention (CBI).
This new medical technology, is called transcranial direct current stimulation (tDCS), it uses a very small amount of electricity to temporarily stimulate specific areas of the brain thought to be involved in pain reduction. The electrical current passes through the skin, scalp, hair, and skull and requires no additional medication, sedation, or needles.
This study will investigate the effects of tDCS, the Cognitive-Behavioral (CB) intervention and their combination on pain among veterans following total knee arthroplasty (TKA) or total hip arthroplasty (THA). You may benefit in the form of decreased pain and opioid requirements following your knee or hip replacement surgery. However, benefit is only likely if you are randomized to one of the 3 (out of 4) groups.
This study hopes to determine the effects of these interventions and their combined effect on post-operative pain, opioid use and functioning during the 48-hour post-operative period following a total knee or hip replacement.