Operant down-conditioning of the soleus H-reflex in spastic hemiparesis after stroke

Date Added
October 6th, 2015
PRO Number
Pro00048307
Researcher
Aiko Thompson

List of Studies


Keywords
Nervous System, Rehabilitation Studies, Stroke
Summary

Reflexes are important parts of our movements. When reflexes are not working well, movements are clumsy or even impossible. After stroke, reflex responses may change. Researchers have found that people can learn to increase or decrease a reflex response with training. Recently, we have found that rats and people with partial spinal cord injuries can walk better after they are trained to change a spinal cord reflex. Thus, learning to change a reflex response may help people recover after a nervous system injury. In this study, we aim to examine whether learning to change a spinal reflex through operant conditioning training can improve movement function recovery in people after stroke or other damage to the nervous system.

Institution
MUSC
Recruitment Contact
Blair Dellenbach
843-792-6313
stecb@musc.edu

Operant Conditioning of Spinal Reflexes in Youth

Date Added
August 4th, 2015
PRO Number
Pro00046453
Researcher
Aiko Thompson

List of Studies


Keywords
Nervous System, Rehabilitation Studies, Spinal Cord
Summary

Reflexes are important parts of our movements. When reflexes are not working well, movements are clumsy or even impossible. Researchers have found that people can learn to increase or decrease a reflex response with training. Recently, we have found that rats with spinal cord injuries can walk better after they are trained to change a spinal cord reflex. Thus, learning to change a reflex response may help people recover after a nervous system injury. We are currently studying effects of spinal cord reflex training (e.g., a knee jerk reflex) in people in early adulthood. We hope that the results of this study will help us develop spinal reflex training as a new treatment to help people in early adulthood recover better after spinal cord injury or other damage to the nervous system.

Institution
MUSC
Recruitment Contact
Blair Dellenbach
843-792-6313
stecb@musc.edu

VA Stroke Rehabilitation Research Database

Date Added
May 20th, 2015
PRO Number
Pro00043107
Researcher
Brian Cence

List of Studies

Keywords
Military, Rehabilitation Studies, Stroke
Summary

The aim of this study is to gather information about veterans at the Ralph H. Johnson Veterans Medical Center (RHJ-VAMC) who've experienced a stroke and are interested in participating in rehabilitation research.

VA principal investigators at the Center for Rehabilitation Research in Neurologic Conditions (CRRNC) conduct stroke rehabilitation research for individuals. CRRNC include laboratories that investigate and assess upper extremity motor function, neuro-stimulation, communication and swallowing, locomotor energetics, locomotor and rehabilitation, and motor performance functions.

Participants will be asked to come to the CRRNC located at the Medical University of South Carolina (77 President Street, Charleston, South Carolina) and fill out a simple screening form with study personnel. Participants may be contacted in the future for qualifying studies.

Institution
MUSC
Recruitment Contact
Brian Cence
843-792-2668
cence@musc.edu

Operant Conditioning of Spinal Reflexes to Improve Motor Function Recovery after Spinal Cord Injury

Date Added
April 7th, 2015
PRO Number
Pro00042082
Researcher
Aiko Thompson

List of Studies


Keywords
Nervous System, Rehabilitation Studies, Spinal Cord
Summary

Reflexes are important parts of our movements. When reflexes are not working well, movements are clumsy or even impossible. After spinal cord injury, reflex responses may change. Researchers have found that people can learn to increase or decrease a reflex response with training. Recently, we have found that rats with spinal cord injuries can walk better after they are trained to change a spinal reflex. Thus, learning to change a reflex response may help people recover after a nervous system injury. In this study, we aim to examine whether learning to change a spinal reflex through operant conditioning training can improve movement function recovery after spinal cord injury.

Institution
MUSC
Recruitment Contact
Blair Dellenbach
843-792-6313
stecb@musc.edu

Operant Conditioning of Motor Evoked Potential to Transcranial Magnetic Stimulation to Improve Motor Function Recovery after Spinal Cord Injury

Date Added
April 7th, 2015
PRO Number
Pro00042109
Researcher
Aiko Thompson

List of Studies


Keywords
Movement Disorders, Rehabilitation Studies, Spinal Cord
Summary

Over many years, we have learnt that the brain's connections with the spinal cord change in response to injury or training. Because brain-spinal cord (i.e., corticospinal) pathways are very important in movement control, restoring function of these pathways could help to restore useful movement after spinal cord injury (SCI). In this project, we hypothesize that operant conditioning training of the muscle response to non-invasive transcranial magnetic stimulation can strengthen the functional connectivity of corticospinal pathways and thereby alleviate movement problems in people with chronic incomplete SCI. This study will require about 38 visits over the first 3 months, and another 4 visits over an additional 3 months. Each visit will take about an hour.

Institution
MUSC
Recruitment Contact
Blair Dellenbach
843-792-6313
stecb@musc.edu

Modulation of Spinal Reflexes during Walking in People after Spinal Cord Injury

Date Added
April 7th, 2015
PRO Number
Pro00042824
Researcher
Aiko Thompson

List of Studies


Keywords
Movement Disorders, Rehabilitation Studies, Spinal Cord
Summary

Spinal reflexes take important part in our movement. After spinal cord injury (SCI), reflexes often change. For many years, researchers and doctors have assumed that abnormally acting spinal reflexes lead to movement problems, without clear scientific evidence. For example, in people who suffer spasticity, a common problem after SCI, walking is disturbed, presumably because stretch reflexes (e.g., knee jerk reflex) and some other reflexes are not working well. Yet, which reflex is causing a problem in what way has not been well understood. Such understanding is very important in developing and applying effective therapies for improving gait recovery after SCI. Therefore, in this project, we are studying spinal stretch reflexes and other reflexes during walking, to understand how these reflexes contribute to spastic gait problems in people with chronic incomplete SCI. Successful completion of this project will result in better understanding of spastic gait problems, which in turn, will help us develop more effective therapy application and improve the quality of life in people after SCI.

Institution
MUSC
Recruitment Contact
Blair Dellenbach
843-792-6313
stecb@musc.edu

Registry for Stroke Recovery

Date Added
September 16th, 2014
PRO Number
Pro00037803
Researcher
Robert Adams

List of Studies


Keywords
Rehabilitation Studies, Stroke, Stroke Recovery
Summary

RESTORE is a database of individuals who are interested in being contacted about future stroke research at the Medical University of South Carolina. Included in the database is health information and characteristics about the individual's health, stroke, and their recovery. The results of other stroke recovery studies the individual participates in at MUSC will also be in the database. The database and information included will lead to better and more targeted recruitment for stroke recovery projects.

Institution
MUSC
Recruitment Contact
Holly Boggan
843-792-1598
bogganhl@musc.edu

Assessment of Contributions to Impaired Walking after Neurologic Injury

Date Added
January 15th, 2014
PRO Number
Pro00028941
Researcher
Chris Gregory

List of Studies


Keywords
Brain, Healthy Volunteer Studies, Muscle, Nerve, Physical Therapy, Rehabilitation Studies, Stroke
Summary

Rehabilitation interventions including resistance training, functional and task-specific therapy, and gait or locomotor training have been shown to be successful in improving motor function in individuals with neurologic disease or injury. Recent investigations conducted in our laboratory indicate that intense resistance training coupled with task-specific functional training lead to significant gains in functional motor recovery. Similarly, gait rehabilitation involving intense treadmill training and/or task-specific locomotor training has been shown to be effective in improving locomotor ability. However, the underlying neural adaptations associated with these therapeutic approaches are not well understood. Our primary goal is to understand the motor control underpinnings of neurologic rehabilitation in order to apply this knowledge to future generations of therapeutic interventions.

Institution
MUSC
Recruitment Contact
Brian Cence
843-792-2668
cence@musc.edu

Clinical Database for Rehabilitation Research after Neurological Injury

Date Added
May 7th, 2012
PRO Number
Pro00015991
Researcher
Steven Kautz

List of Studies


Keywords
Healthy Volunteer Studies, Rehabilitation Studies, Spinal Cord, Stroke
Summary

In this study researchers aim to improve the collaborative research efforts of the Center for Rehabilitation Research in Neurological Conditions at the Medical University of South Carolina. The Center is comprised of several laboratories, including: the Communication and Swallowing Laboratory; the Locomotor Energetics and Assessment Laboratory; the Locomotor Rehabilitation Laboratory; the Neuromuscular Assessment Laboratory; and the Upper Extremity Motor Function Laboratory. The PI and investigators will recruit for their current and future studies in the above laboratories from the Clinical Database established here. Studies utilizing the Clinical Database will not include PHI but will only link to the Clinical Database individual patient code. This study is completed by completing a simple screening form with study personnel. Medical care/treatment future participation in studies is not influenced by inclusion in this study. We are also recruiting Healthy Controls for this study.

Institution
MUSC
Recruitment Contact
Aaron Embry
843-792-8198
embry@musc.edu



-- OR --