Incline Training to Personalize Motor Control Interventions after Stroke Save

Date Added
May 3rd, 2018
PRO Number
Pro00077797
Researcher
Mark Bowden

Silhouette
Keywords
Exercise, Physical Therapy, Rehabilitation Studies, Stroke, Stroke Recovery
Summary

Stroke is the leading cause of disability, as many of those affected demonstrate difficulty with movement and
walking. Rehabilitation post-stroke can be challenging and often ineffective because no two stroke survivors
present with the same mobility impairments, yet the same physical therapy interventions are utilized. Thus, a need exists to personalize rehabilitation techniques to improve function and mobility post-stroke. The proposed innovative research will test a framework created to identify the most effective intervention based on a participant's specific motor control problems. We plan to study how self-selected walking speed is impacted by a four-week walking program that incorporates either walking on an inclined or declined treadmill compared to walking on a flat treadmill. We will determine the best intervention for each problem and identify predictors of response. Selecting the correct intervention for personalized motor control problems, as opposed to applying a one-size-fits-all strategy for rehabilitation, is likely to improve walking function in Veterans after stroke.

Institution
MUSC
Recruitment Contact
Brian Cence
(843) 792-2668
cence@musc.edu

Brain functional connectivity & sensory stimulation-enhanced therapy post stroke Save

Date Added
January 2nd, 2018
PRO Number
Pro00074041
Researcher
Na jin Seo

Silhouette
Keywords
Aging, Central Nervous System, Movement Disorders, Muscle, Nerve, Nervous System, Physical Therapy, Rehabilitation Studies, Stroke, Stroke Recovery
Summary

After stroke, it is common for individuals to experience hand impairment. This deficit can severely restrict functional ability and independence. Recovery of hand function following stroke is highly variable. In this study, we will use brain imaging to predict individual response to treatment after only one therapy session. Survivors of stroke will receive upper extremity therapy with a novel intervention using a smart watch. The device applies imperceptible vibration to the wrist and has been shown to immediately improve chronic stroke survivors' touch sensation and hand dexterity in preliminary studies.

Institution
MUSC
Recruitment Contact
Amanda Vatinno
(847) 715-8031
vatinno@musc.edu

TheraBracelet: The first and only wearable to instantly improve stroke hand function Save

Date Added
January 3rd, 2017
PRO Number
Pro00062471
Researcher
Na jin Seo

Silhouette
Keywords
Aging, Central Nervous System, Movement Disorders, Muscle, Nerve, Nervous System, Physical Therapy, Rehabilitation Studies, Stroke, Stroke Recovery
Summary

Post-stroke hand impairment is highly prevalent and severely restricts functional ability and independence. Yet, there is no assistive device to help hand function at home, every day, during activities of daily living. This study addresses this gap by providing an innovative technology. The "TheraBracelet" is a wristband applying imperceptible white-noise vibration to skin. TheraBracelet is efficacious, as it has been shown to immediately improve chronic stroke survivors' touch sensation and hand dexterity in preliminary studies. TheraBracelet is affordable by using only a low-cost vibrator. TheraBracelet is also translational, because a vibrator strategically placed at the wrist does not interfere with dexterous finger motions, and it is low-risk by involving only imperceptible vibration on skin. These practicalities assure easy adoption in home environment for large impact on sensorimotor impairment. This study is to determine the feasibility and safety of using this assistive device all day every day for a month during daily activity, and to determine if TheraBracelet's instant effects are sustained during prolonged use. This objective will be accomplished in a double-blinded, randomized, controlled, crossover design study. Feasibility (compliance of using the device everyday) and safety will be assessed for the treatment condition compared to the control condition (wearing the device without vibration) through weekly evaluations. In addition, TheraBracelet's instant benefits in improving hand function will be assessed weekly. Persistence of TheraBracelet's instant benefits across all weekly evaluations will support durability (i.e. desensitization to vibration does not occur during extended daily use over a one-month period). This project is expected to lead to an assistive wristband that increases hand function during activities of daily living, thus increasing independence and quality of life and reducing caregiver burden for a large number of stroke survivors with hand impairment.

Institution
MUSC
Recruitment Contact
Andrew Fortune
843-792-8970
fortunea@musc.edu

S.C.O.P.E. Systematic Collection and Objective Progressive Exercise Save

Date Added
November 16th, 2016
PRO Number
Pro00057398
Researcher
Mark Bowden

Silhouette
Keywords
Physical Therapy, Rehabilitation Studies, Stroke
Summary

We have designed a comprehensive, evidence-based approach to physical therapy rehabilitation after stroke that focuses on the intensity of cardiovascular, strength, and gait training, standardizing the dosage and progression of each type of training. Implementation of this standardization of intensity protocol will be guided via an internet-based (REDCap) interactive program available to each treating therapist. This program will cue the therapist to complete two sessions of cardiovascular, strength, and gait training each week at the appropriate intensity while not being prescriptive about specific activities to meet the stated goals. Eighty individuals with stroke (20 each from Charleston, SC; Anderson, SC; Rock Hill, SC; and York, PA ) who meet inclusion and exclusion criteria and will undergo a standardized evaluation at admission and discharge assessing gait speed, endurance, strength, balance, and overall functional independence and will be compared to 80 individuals with stroke receiving usual care. In addition, each enrollee will participate in a telephone screen at 90 days post-stroke to assess participation, quality of life, falls efficacy, falls history, and stroke-related secondary health conditions/readmissions.

Institution
MUSC
Recruitment Contact
Eric Monsch
(843) 792-0275
monsch@musc.edu

The effects of impaired post-stroke coordination and motor pathway integrity on mobility performance Save

Date Added
November 6th, 2015
PRO Number
Pro00048394
Researcher
Steven Kautz

Silhouette
Keywords
Healthy Volunteer Studies, Military, Muscle, Physical Therapy, Rehabilitation Studies, Stroke Recovery
Summary

Walking is important to persons who have had a stroke and better rehabilitation methods are needed to restore or improve their walking. This project will investigate ways to improve upon and diagnose the specific underlying impairments. Future work will allow clinicians, such as physicians and physical therapists, to make measurements in their clinic to better diagnose a person's specific walking deficit, design a specific treatment plan, and monitor its ability to restore or improve the person's walking.

Institution
MUSC
Recruitment Contact
Landi Wilson
843-792-9013
Wilsolan@musc.edu

Excitatory and Inhibitory rTMS as Mechanistic Contributors to Walking Recovery Save

Date Added
March 4th, 2014
PRO Number
Pro00032252
Researcher
Mark Bowden

Silhouette
Keywords
Nervous System, Physical Therapy, Rehabilitation Studies, Stroke
Summary

Individuals with chronic stroke (greater than 6 months post-stroke) will be evaluated to assess the effects of repetitive transcranial magnetic stimulation (rTMS) on walking function. Contributors to walking such as lesion size and location, brain activation, strength, force production during walking, and biomechanical variables will also be assessed. Each individual will be examined with excitatory, inhibitory and sham stimulation to assess the effects on the above variables. In addition, each type of stimulation will be combined with a walking rehabilitation program to determine the affect of adding rehabilitation. Each participant will be requested to undergo 8 sessions.

Institution
MUSC
Recruitment Contact
Brian Cence
843-792-2668
cence@musc.edu

Assessment of Contributions to Impaired Walking after Neurologic Injury Save

Date Added
January 15th, 2014
PRO Number
Pro00028941
Researcher
Mark Bowden

Silhouette
Keywords
Brain, Healthy Volunteer Studies, Muscle, Nerve, Physical Therapy, Rehabilitation Studies, Stroke
Summary

Rehabilitation interventions including resistance training, functional and task-specific therapy, and gait or locomotor training have been shown to be successful in improving motor function in individuals with neurologic disease or injury. Recent investigations conducted in our laboratory indicate that intense resistance training coupled with task-specific functional training lead to significant gains in functional motor recovery. Similarly, gait rehabilitation involving intense treadmill training and/or task-specific locomotor training has been shown to be effective in improving locomotor ability. However, the underlying neural adaptations associated with these therapeutic approaches are not well understood. Our primary goal is to understand the motor control underpinnings of neurologic rehabilitation in order to apply this knowledge to future generations of therapeutic interventions.

Institution
MUSC
Recruitment Contact
Brian Cence
843-792-2668
cence@musc.edu

Augmentation of Locomotor Adaptation Post-Stroke Save

Date Added
March 6th, 2012
PRO Number
Pro00016060
Researcher
Mark Bowden

Silhouette
Keywords
Physical Therapy, Rehabilitation Studies, Stroke
Summary

This project will evaluate two different methods of normalizing the center of mass acceleration (COMa) in individuals post-stroke, specifically focusing on rates and pattern of recovery to analyze walking-specific adaptations as precursors to motor learning. In addition, the proposed project seeks to establish the optimal configuration of electrodes to activate neural circuits involved in post-stroke locomotion. Once the better method of training COMa and optimal parameters of electrode placement for tDCS are identified, we will evaluate the effects of tDCS on locomotor adaptations during single sessions and over a five-day training period.

Institution
MUSC
Recruitment Contact
Brian Cence
843.792.2668
cence@musc.edu

Change_preferences

-- OR --

Create_login