Rehabilitation interventions including resistance training, functional and task-specific therapy, and gait or locomotor training have been shown to be successful in improving motor function in individuals with neurologic disease or injury. Recent investigations conducted in our laboratory indicate that intense resistance training coupled with task-specific functional training lead to significant gains in functional motor recovery. Similarly, gait rehabilitation involving intense treadmill training and/or task-specific locomotor training has been shown to be effective in improving locomotor ability. However, the underlying neural adaptations associated with these therapeutic approaches are not well understood. Our primary goal is to understand the motor control underpinnings of neurologic rehabilitation in order to apply this knowledge to future generations of therapeutic interventions.
RESTORE is a database of individuals who are interested in being contacted about future stroke research at the Medical University of South Carolina. Included in the database is health information and characteristics about the individual's health, stroke, and their recovery. The results of other stroke recovery studies the individual participates in at MUSC will also be in the database. The database and information included will lead to better and more targeted recruitment for stroke recovery projects.
Reflexes are important parts of our movements. When reflexes are not working well, movements are clumsy or even impossible. After stroke, reflex responses may change. Researchers have found that people can learn to increase or decrease a reflex response with training. Recently, we have found that rats and people with partial spinal cord injuries can walk better after they are trained to change a spinal cord reflex. Thus, learning to change a reflex response may help people recover after a nervous system injury. In this study, we aim to examine whether learning to change a spinal reflex through operant conditioning training can improve movement function recovery in people after stroke or other damage to the nervous system.
Hand disability after stroke has a profound negative impact on functional ability and independence. Hand therapy may be augmented with sensory stimulation for better outcomes. We have developed a novel sensory stimulation - unfelt vibration applied via a wristwatch. Participants will receive this novel stimulation with hand task practice therapy or therapy only to determine if use of this stimulation is better for recovery.
The purpose of the study is to compare the effects of apixaban (also known as Eliquis®) with aspirin in patients with atrial fibrillation and a recent brain hemorrhage to see which is better in preventing strokes and death.
Subjects will be in the research study for up to 3 years (minimum of 1 year). About 700 people will take part in this study at approximately 125 sites throughout the United States.
The study team is recruiting 20 adults with spasticity due to chronic stroke and 20 adults with no neurological injuries for a 4 day study over 1 week. In people with chronic stroke, one of the most common and disabling problems is spasticity (increased muscle tone or muscle stiffness). The purpose of this research study is to examine effects of dry needling on the nervous system (pathways between the muscle, spinal cord, and brain) in people with spasticity due to chronic stroke. Dry needling is a procedure in which a thin, stainless steel needle is inserted into your skin to produce a muscle twitch response. It is intended to release a knot in your muscle and relieve pain.
The total study duration is 4 visits over one week. The first visit will take about 1.5 hours, during which the study team will determine the best electrode placement and create a removeable cast of your arm or leg to aid in placing electrodes in the next visits. The second visit will take about 3 hours, during which dry needling will take place, and the fourth and fifth visits will take about 1.5 hour. During all visits you will be asked to participate in examinations of reflexes (muscle responses to non-invasive nerve stimulation) and arm/leg function.
Stroke is a leading cause of disability in the U.S. and many Veteran stroke survivors live with severe disability. Despite recent advances in rehabilitation treatments many stroke survivors have persistent physical and mental difficulties such as reduced arm and leg function, difficulty thinking, and depression.
Developing treatments that address these problems is necessary to improve long-term recovery for stroke survivors. Aerobic exercise (AEx) can improve physical and mental function, and reduce depression. Additionally, AEx may enhance physical rehabilitation by making the brain more receptive to, and consequently improving the response to a rehabilitation treatment. Therefore, combining AEx with physical rehabilitation has the potential to improve multiple parts of stroke recovery. This study will examine the effect of combining AEx with physical rehabilitation on physical and mental function in stroke survivors. By gaining a better understanding of the effects of this combined intervention we aim to advance the rehabilitative care of Veteran stroke survivors.
To assess comparable efficacy of aphasia therapy administered via telerehab (aphasia remote therapy; ART) to aphasia therapy administered in clinic (in-clinic therapy; I-CT).
Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation method often used to assess connectivity between the brain and specific muscles. This research study is aimed at finding the changes in the manner brain communicates with leg muscles post-stroke and its effects on movement coordination during walking.
Constraint-induced movement therapy (CIMT) is the most efficacious treatment for children with hemiparesis from a perinatal arterial stroke but instead, weekly low-dose OT and/or PT is typical. The aims of this study are to compare 2 high doses of treatment to usual care in helping infants improve skills on the hemiplegic hand/arm and to improve bimanual activities. In addition, the association with gross motor, language and cognition will be explored.