Operant Conditioning of Spinal Reflexes to Improve Motor Function Recovery after Spinal Cord Injury

Date Added
April 7th, 2015
PRO Number
Pro00042082
Researcher
Aiko Thompson

List of Studies


Keywords
Nervous System, Rehabilitation Studies, Spinal Cord
Summary

Reflexes are important parts of our movements. When reflexes are not working well, movements are clumsy or even impossible. After spinal cord injury, reflex responses may change. Researchers have found that people can learn to increase or decrease a reflex response with training. Recently, we have found that rats with spinal cord injuries can walk better after they are trained to change a spinal reflex. Thus, learning to change a reflex response may help people recover after a nervous system injury. In this study, we aim to examine whether learning to change a spinal reflex through operant conditioning training can improve movement function recovery after spinal cord injury.

Institution
MUSC
Recruitment Contact
Blair Dellenbach
843-792-6313
stecb@musc.edu

Operant Conditioning of Motor Evoked Potential to Transcranial Magnetic Stimulation to Improve Motor Function Recovery after Spinal Cord Injury

Date Added
April 7th, 2015
PRO Number
Pro00042109
Researcher
Aiko Thompson

List of Studies


Keywords
Movement Disorders, Rehabilitation Studies, Spinal Cord
Summary

Over many years, we have learnt that the brain's connections with the spinal cord change in response to injury or training. Because brain-spinal cord (i.e., corticospinal) pathways are very important in movement control, restoring function of these pathways could help to restore useful movement after spinal cord injury (SCI). In this project, we hypothesize that operant conditioning training of the muscle response to non-invasive transcranial magnetic stimulation can strengthen the functional connectivity of corticospinal pathways and thereby alleviate movement problems in people with chronic incomplete SCI. This study will require about 38 visits over the first 3 months, and another 4 visits over an additional 3 months. Each visit will take about an hour.

Institution
MUSC
Recruitment Contact
Blair Dellenbach
843-792-6313
stecb@musc.edu

Modulation of Spinal Reflexes during Walking in People after Spinal Cord Injury

Date Added
April 7th, 2015
PRO Number
Pro00042824
Researcher
Aiko Thompson

List of Studies


Keywords
Movement Disorders, Rehabilitation Studies, Spinal Cord
Summary

Spinal reflexes take important part in our movement. After spinal cord injury (SCI), reflexes often change. For many years, researchers and doctors have assumed that abnormally acting spinal reflexes lead to movement problems, without clear scientific evidence. For example, in people who suffer spasticity, a common problem after SCI, walking is disturbed, presumably because stretch reflexes (e.g., knee jerk reflex) and some other reflexes are not working well. Yet, which reflex is causing a problem in what way has not been well understood. Such understanding is very important in developing and applying effective therapies for improving gait recovery after SCI. Therefore, in this project, we are studying spinal stretch reflexes and other reflexes during walking, to understand how these reflexes contribute to spastic gait problems in people with chronic incomplete SCI. Successful completion of this project will result in better understanding of spastic gait problems, which in turn, will help us develop more effective therapy application and improve the quality of life in people after SCI.

Institution
MUSC
Recruitment Contact
Blair Dellenbach
843-792-6313
stecb@musc.edu

Operant Conditioning of Spinal Reflexes in Youth

Date Added
August 4th, 2015
PRO Number
Pro00046453
Researcher
Aiko Thompson

List of Studies


Keywords
Nervous System, Rehabilitation Studies, Spinal Cord
Summary

Reflexes are important parts of our movements. When reflexes are not working well, movements are clumsy or even impossible. Researchers have found that people can learn to increase or decrease a reflex response with training. Recently, we have found that rats with spinal cord injuries can walk better after they are trained to change a spinal cord reflex. Thus, learning to change a reflex response may help people recover after a nervous system injury. We are currently studying effects of spinal cord reflex training (e.g., a knee jerk reflex) in people in early adulthood. We hope that the results of this study will help us develop spinal reflex training as a new treatment to help people in early adulthood recover better after spinal cord injury or other damage to the nervous system.

Institution
MUSC
Recruitment Contact
Blair Dellenbach
843-792-6313
stecb@musc.edu

Operant down-conditioning of the soleus H-reflex in spastic hemiparesis after stroke

Date Added
October 6th, 2015
PRO Number
Pro00048307
Researcher
Aiko Thompson

List of Studies


Keywords
Nervous System, Rehabilitation Studies, Stroke
Summary

Reflexes are important parts of our movements. When reflexes are not working well, movements are clumsy or even impossible. After stroke, reflex responses may change. Researchers have found that people can learn to increase or decrease a reflex response with training. Recently, we have found that rats and people with partial spinal cord injuries can walk better after they are trained to change a spinal cord reflex. Thus, learning to change a reflex response may help people recover after a nervous system injury. In this study, we aim to examine whether learning to change a spinal reflex through operant conditioning training can improve movement function recovery in people after stroke or other damage to the nervous system.

Institution
MUSC
Recruitment Contact
Blair Dellenbach
843-792-6313
stecb@musc.edu

Characterization of physiological changes induced through motor-evoked potential conditioning in people with spinal cord injury

Date Added
December 3rd, 2019
PRO Number
Pro00091457
Researcher
Aiko Thompson

List of Studies


Keywords
Central Nervous System, Nervous System, Rehabilitation Studies, Spinal Cord
Summary

We are currently recruiting volunteers who are interested in participating in a brain-spinal cord-muscle response training study that aims to better understand the changes that take place in the nervous system as a result of this type of training. After spinal cord injury, brain-to-muscle connections are often interrupted. Because these connections are important in movement control, when they are not working well, movements may be disturbed. Researchers have found that people can learn to strengthen these connections through training. Strengthening these connections may be able to improve movement control and recovery after injuries.

Research participants will be asked to stand, sit, and walk during the study sessions. Electrodes are placed on the skin over leg muscles for monitoring muscle activity. For examining brain-to-muscle connections, we use transcranial magnetic stimulation. The stimulation is applied over the head and will indirectly stimulate brain cells with little or no discomfort.

Participation in this study requires approximately three sessions per week for four months, followed by two to three sessions over another three months. Each session lasts approximately 1 hour. Participants will receive a mileage reimbursement.

Institution
MUSC
Recruitment Contact
Blair Dellenbach
843-792-6313
stecb@musc.edu

Neurophysiological characterization of dry needling in people with spasticity due to stroke

Date Added
March 3rd, 2020
PRO Number
Pro00095077
Researcher
Aiko Thompson

List of Studies


Keywords
Central Nervous System, Physical Therapy, Rehabilitation Studies, Stroke, Stroke Recovery
Summary

The study team is recruiting 20 adults with spasticity due to chronic stroke and 20 adults with no neurological injuries for a 4 day study over 1 week. In people with chronic stroke, one of the most common and disabling problems is spasticity (increased muscle tone or muscle stiffness). The purpose of this research study is to examine effects of dry needling on the nervous system (pathways between the muscle, spinal cord, and brain) in people with spasticity due to chronic stroke. Dry needling is a procedure in which a thin, stainless steel needle is inserted into your skin to produce a muscle twitch response. It is intended to release a knot in your muscle and relieve pain.

The total study duration is 4 visits over one week. The first visit will take about 1.5 hours, during which the study team will determine the best electrode placement and create a removeable cast of your arm or leg to aid in placing electrodes in the next visits. The second visit will take about 3 hours, during which dry needling will take place, and the fourth and fifth visits will take about 1.5 hour. During all visits you will be asked to participate in examinations of reflexes (muscle responses to non-invasive nerve stimulation) and arm/leg function.

Institution
MUSC
Recruitment Contact
Blair Dellenbach
843-792-6313
stecb@musc.edu

Operant Conditioning of Spinal Reflexes to Enhance Motor Function Recovery after Spinal Cord injury

Date Added
April 7th, 2020
PRO Number
Pro00095583
Researcher
Aiko Thompson

List of Studies


Keywords
Central Nervous System, Movement Disorders, Rehabilitation Studies, Spinal Cord
Summary

The purpose of the first portion of this study is to gather feedback from clinicians on the usability of the current system and procedure, so the researchers can make reflex training more useful and usable for improving recovery after spinal cord injury or other nervous system injuries and diseases. The researchers are recruiting 20 therapists who have been actively practicing physical medicine and 30 adults with no known neurological conditions to test system usability and the reflex operant conditioning protocol. For this portion of the study, there are 5 visits. We will also recruit 15 adults with no neurological injuries, 15 adults with neuropathic pain, and 15 adults with non-neuropathic pain to participate in one visit to provide feedback on sensation caused by stimulating electrodes.

The purpose of the second part of the study is to validate the capacity of the system to change the size of the targeted reflex. For this the researchers are recruiting 25 individuals with chronic incomplete SCI who have spasticity in the leg to participate in the reflex training procedure. The study involves approximately 45 visits with a total study duration of about 6 months.

Institution
MUSC
Recruitment Contact
Blair Dellenbach
843-792-6313
stecb@musc.edu

Pilot Trial of Belimumab in Early Lupus

Date Added
February 9th, 2021
PRO Number
Pro00104939
Researcher
Melissa Cunningham

List of Studies


Keywords
Drug Studies, Lupus
Summary

This is a study looking at the effects of Belimumab, a medication approved by the FDA to treat lupus, in people who have been recently diagnosed with lupus. It proposes that the early use of Belimumab may prevent long-term tissue damage from the disease. The study will last 2 years with clinic visits every 4 weeks.

Institution
MUSC
Recruitment Contact
Katlin Thompson
843-792-2509
kat238@musc.edu

The role of estrogen receptor alpha variant size and localization in modulating TLR7-induced inflammation.

Date Added
January 21st, 2022
PRO Number
Pro00113082
Researcher
Melissa Cunningham

List of Studies


Keywords
Autoimmune disease, Healthy Volunteer Studies, Lupus
Summary

This observational, non-medication study's purpose is to help learn more about the immune system's inflammation process involved in lupus. The study will be enrolling both lupus and non-lupus (healthy control) females aged 18 and older who identify as Black/African American and Non-Hispanic or White and Non-Hispanic for this comparison study. Participation involves a one-time blood collection.

There are no direct benefits in participating, but it is hoped information learned may help us to develop a better understanding of lupus. Compensation is available for participation.

Institution
MUSC
Recruitment Contact
Katlin Thompson
843-792-5290
kat238@musc.edu



-- OR --