In this study, we will look back at past medical records to test how well two computer-based tools can help spot two types of heart disease: hypertrophic cardiomyopathy (HCM) and a form of cardiac amyloidosis called transthyretin amyloidosis (ATTR). One tool analyzes heart ultrasound images (echocardiograms) using artificial intelligence to identify signs of these conditions. The other tool looks at patterns in electronic health records—like diagnoses, test results, and medications—to flag patients who may have HCM or ATTR. Our goal is to see how accurate and useful these tools are in finding patients who may need further evaluation or care.
In this study, we will look back at past medical records to test how well two computer-based tools can help spot two types of heart disease: hypertrophic cardiomyopathy (HCM) and a form of cardiac amyloidosis called transthyretin amyloidosis (ATTR). One tool analyzes heart ultrasound images (echocardiograms) using artificial intelligence to identify signs of these conditions. The other tool looks at patterns in electronic health records—like diagnoses, test results, and medications—to flag patients who may have HCM or ATTR. Our goal is to see how accurate and useful these tools are in finding patients who may need further evaluation or care.
In this study, we will look back at past medical records to test how well two computer-based tools can help spot two types of heart disease: hypertrophic cardiomyopathy (HCM) and a form of cardiac amyloidosis called transthyretin amyloidosis (ATTR). One tool analyzes heart ultrasound images (echocardiograms) using artificial intelligence to identify signs of these conditions. The other tool looks at patterns in electronic health records—like diagnoses, test results, and medications—to flag patients who may have HCM or ATTR. Our goal is to see how accurate and useful these tools are in finding patients who may need further evaluation or care.
In this study, we will look back at past medical records to test how well two computer-based tools can help spot two types of heart disease: hypertrophic cardiomyopathy (HCM) and a form of cardiac amyloidosis called transthyretin amyloidosis (ATTR). One tool analyzes heart ultrasound images (echocardiograms) using artificial intelligence to identify signs of these conditions. The other tool looks at patterns in electronic health records—like diagnoses, test results, and medications—to flag patients who may have HCM or ATTR. Our goal is to see how accurate and useful these tools are in finding patients who may need further evaluation or care.
In this study, we will look back at past medical records to test how well two computer-based tools can help spot two types of heart disease: hypertrophic cardiomyopathy (HCM) and a form of cardiac amyloidosis called transthyretin amyloidosis (ATTR). One tool analyzes heart ultrasound images (echocardiograms) using artificial intelligence to identify signs of these conditions. The other tool looks at patterns in electronic health records—like diagnoses, test results, and medications—to flag patients who may have HCM or ATTR. Our goal is to see how accurate and useful these tools are in finding patients who may need further evaluation or care.
In this study, we will look back at past medical records to test how well two computer-based tools can help spot two types of heart disease: hypertrophic cardiomyopathy (HCM) and a form of cardiac amyloidosis called transthyretin amyloidosis (ATTR). One tool analyzes heart ultrasound images (echocardiograms) using artificial intelligence to identify signs of these conditions. The other tool looks at patterns in electronic health records—like diagnoses, test results, and medications—to flag patients who may have HCM or ATTR. Our goal is to see how accurate and useful these tools are in finding patients who may need further evaluation or care.
In this study, we will look back at past medical records to test how well two computer-based tools can help spot two types of heart disease: hypertrophic cardiomyopathy (HCM) and a form of cardiac amyloidosis called transthyretin amyloidosis (ATTR). One tool analyzes heart ultrasound images (echocardiograms) using artificial intelligence to identify signs of these conditions. The other tool looks at patterns in electronic health records—like diagnoses, test results, and medications—to flag patients who may have HCM or ATTR. Our goal is to see how accurate and useful these tools are in finding patients who may need further evaluation or care.
In this study, we will look back at past medical records to test how well two computer-based tools can help spot two types of heart disease: hypertrophic cardiomyopathy (HCM) and a form of cardiac amyloidosis called transthyretin amyloidosis (ATTR). One tool analyzes heart ultrasound images (echocardiograms) using artificial intelligence to identify signs of these conditions. The other tool looks at patterns in electronic health records—like diagnoses, test results, and medications—to flag patients who may have HCM or ATTR. Our goal is to see how accurate and useful these tools are in finding patients who may need further evaluation or care.
This research study aims to evaluate how effective and safe the 100 mg daily dose of ritlecitinib is for participants. By including the already approved 50 mg daily dose as a reference point, the study seeks to draw direct comparisons between these two dosages. This comparison will help determine if increasing the dosage offers additional benefits or poses any new risks. Participants in this study will be closely monitored to assess both their response to treatment and any potential side effects that may arise. The findings from this investigation are expected to provide valuable insights into optimizing ritlecitinib dosing regimens for better therapeutic outcomes.
This study is a database evaluating data in patients with chronic pancreatitis that are seen and evaluated in a surgery clinic and ultimately under surgery for chronic pancreatitis with total pancreatectomy with islet cell transplant. Patients will receive the standard of care for this operation. This is not a clinical trial, and no changes will be made to their care. Data will be collected to review outcomes only. They may be asked to fill out study related questionnaires or surveys.