VA Principal Investigators plan to gather information about veterans at the VAHCS who are interested in participating in rehabilitation research. Subject information collected will be housed in a centralized Rehabilitation Research Repository. VAHCS investigators may access this repository to quickly identify and recruit individuals who wish to be contacted for current and future VA IRB R&D approved rehabilitation research.
Depression is a leading cause of disability worldwide and is more commonly seen in individuals post-spinal cord injury (SCI) than in the general population. Depression post-SCI impacts an individual's quality of life and recovery. It has been reported that among people with an SCI, those without depression live longer than those with depression. Thus, depression must be treated appropriately. Repetitive transcranial magnetic stimulation (rTMS) is an FDA-approved treatment for depression, but dosing is based on a motor response in the thumb. Over half of individuals with SCI have some degree of arm or hand impairment, so these individuals might not be eligible for rTMS, or they may receive the wrong dose. This study proposes a pilot clinical trial in individuals with depression post-SCI to assess the anti-depressant effect of a novel way to dose rTMS that does not require a motor response. By gaining a better understanding of the application of rTMS for depression post-SCI, we aim to advance the rehabilitative care of those with SCI.
The purpose of this study is to examine the relationship between reflexes in the leg and the presence of neuropathic pain. The researchers are recruiting 30 individuals with spinal cord injury (SCI) total, 15 individuals with neuropathic pain due to SCI and 15 individuals without neuropathic pain. For this portion of the study, there are 2 visits. The first visit will examine cutaneous reflexes in the leg. During the second visit, the study team will assess sensation in the leg and administer questionnaires about pain, functioning, and quality of life.
The purpose of the second part of the study is to examine the effect of reflex training in the leg to decrease neuropathic pain. For this, the researchers are recruiting 15 individuals with neuropathic pain due to spinal cord injury to participate in the reflex training procedure. The study involves approximately 50 visits with a total study duration of about 6.5 months (3 months for baseline and training phases followed by 1 month and 3 month follow-up visits).
The purpose of this study is to examine the relationship between common clinical assessments and measurements of the function of brain-spinal cord-muscle connections. For examining brain-to-muscle pathways, we use a transcranial magnetic stimulator. This stimulator produces a magnetic field for a very short period of time and indirectly stimulates brain cells with little or no discomfort. We hope that the results of this training study will help us in developing therapy strategies for individuals, better understanding clinical assessments, and understanding treatments that aim to improve function recovery in people with SCI.
There are 2 aims for this study. The purpose of the first is to examine the relationship between assessments commonly used in therapy and doctor's offices (clinical assessments) and measurements of the function of brain-spinal cord- muscle connections. This will require 2 visits, and each visit will last approximately 2 hours.
The purpose of the second aim is to examine the effects of training on brain-spinal cord-muscle response. This will require 30 visits, and each visit will last approximately 1.5 hours.
This study is for patients with recurrent/progressive medulloblastoma, which is a type of childhood brain tumor. Participants in this study will receive intravenous (IV, into the veins) bevacizumab and intrathecal (into the spinal fluid) or intraventricular (into the fluid surrounding the brain) etoposide and cytarabine in combination with five oral (taken by mouth) chemotherapy drugs as a possible treatment for recurrent/progressive medulloblastoma. Total study duration is about 1 year and depending on how well a participant tolerates the medications and the response of the disease, the patient may continue the treatment after the first year.
The purpose of the first portion of this study is to gather feedback from clinicians on the usability of the current system and procedure, so the researchers can make reflex training more useful and usable for improving recovery after spinal cord injury or other nervous system injuries and diseases. The researchers are recruiting 20 therapists who have been actively practicing physical medicine and 30 adults with no known neurological conditions to test system usability and the reflex operant conditioning protocol. For this portion of the study, there are 5 visits. We will also recruit 15 adults with no neurological injuries, 15 adults with neuropathic pain, and 15 adults with non-neuropathic pain to participate in one visit to provide feedback on sensation caused by stimulating electrodes.
The purpose of the second part of the study is to validate the capacity of the system to change the size of the targeted reflex. For this the researchers are recruiting 25 individuals with chronic incomplete SCI who have spasticity in the leg to participate in the reflex training procedure. The study involves approximately 45 visits with a total study duration of about 6 months.
We are currently recruiting volunteers who are interested in participating in a brain-spinal cord-muscle response training study that aims to better understand the changes that take place in the nervous system as a result of this type of training. After spinal cord injury, brain-to-muscle connections are often interrupted. Because these connections are important in movement control, when they are not working well, movements may be disturbed. Researchers have found that people can learn to strengthen these connections through training. Strengthening these connections may be able to improve movement control and recovery after injuries.
Research participants will be asked to stand, sit, and walk during the study sessions. Electrodes are placed on the skin over leg muscles for monitoring muscle activity. For examining brain-to-muscle connections, we use transcranial magnetic stimulation. The stimulation is applied over the head and will indirectly stimulate brain cells with little or no discomfort.
Participation in this study requires approximately three sessions per week for four months, followed by two to three sessions over another three months. Each session lasts approximately 1 hour. Participants will receive a mileage reimbursement.
Reflexes are important parts of our movements. When reflexes are not working well, movements are clumsy or even impossible. Researchers have found that people can learn to increase or decrease a reflex response with training. Recently, we have found that rats with spinal cord injuries can walk better after they are trained to change a spinal cord reflex. Thus, learning to change a reflex response may help people recover after a nervous system injury. We are currently studying effects of spinal cord reflex training (e.g., a knee jerk reflex) in people in early adulthood. We hope that the results of this study will help us develop spinal reflex training as a new treatment to help people in early adulthood recover better after spinal cord injury or other damage to the nervous system.
Reflexes are important parts of our movements. When reflexes are not working well, movements are clumsy or even impossible. After spinal cord injury, reflex responses may change. Researchers have found that people can learn to increase or decrease a reflex response with training. Recently, we have found that rats with spinal cord injuries can walk better after they are trained to change a spinal reflex. Thus, learning to change a reflex response may help people recover after a nervous system injury. In this study, we aim to examine whether learning to change a spinal reflex through operant conditioning training can improve movement function recovery after spinal cord injury.
Over many years, we have learnt that the brain's connections with the spinal cord change in response to injury or training. Because brain-spinal cord (i.e., corticospinal) pathways are very important in movement control, restoring function of these pathways could help to restore useful movement after spinal cord injury (SCI). In this project, we hypothesize that operant conditioning training of the muscle response to non-invasive transcranial magnetic stimulation can strengthen the functional connectivity of corticospinal pathways and thereby alleviate movement problems in people with chronic incomplete SCI. This study will require about 38 visits over the first 3 months, and another 4 visits over an additional 3 months. Each visit will take about an hour.