Transcranial direct current stimulation (tDCS) can be an effective therapy for stroke recovery patients. However, the extent to which patients show improvements with tDCS is highly variable. This variability may arise due to the differences of stroke location in the brain and because of differences in brain damage, all of which may differ between patients. If the relationship between these factors and tDCS efficacy were known, recovery from stroke using tDCS might become more predictable. Our overall objective is to understand potential measures of tDCS efficacy that may someday allow for optimization of clinical outcomes and patient care.
Transcranial direct current stimulation (tDCS) has shown the potential to improve symptoms in patients with motor deficits, however its effects have not been consistent in randomized studies to date, limiting widespread adoption of this technology. A critical gap in our knowledge is a detailed understanding of how tDCS affects motor areas in the brain. We propose using tDCS while recording directly from motor cortex using subdural electrocorticography (sECoG) in patients undergoing deep brain stimulation surgery. We expect this novel approach to broaden our understanding of tDCS application and possibly lead to therapeutic advances in this population.