Neuromodulation of motor and sensory spinal pathways in subjects undergoing epidural spinal cord stimulation. Save

Date Added
October 15th, 2019
PRO Number
Pro00089881
Researcher
Nathan Rowland

List of Studies

Silhouette
Keywords
Central Nervous System, Muscle, Nerve, Nervous System, Pain, Spinal Cord
Summary

Spinal cord stimulation (SCS) therapy is currently used to treat the symptoms of chronic pain. Studying the effect of SCS during muscle testing, proprioception testing and multiple gait analysis, we expect to gain understanding of exactly how SCS influences motor and sensory pathways of the spinal cord. We expect this approach to broaden our understanding in the application of SCS in the chronic pain conditions, and may lead to therapeutic advances in other populations, for example, patients with spinal cord injury.

Institution
MUSC
Recruitment Contact
Taylor Mayberry
5024423087
mayberrt@musc.edu

Effect of transcranial direct current stimulation on cortical oscillations during a virtual reality task Save

Date Added
August 20th, 2019
PRO Number
Pro00087153
Researcher
Nathan Rowland

List of Studies

Silhouette
Keywords
Brain, Parkinsons, Stroke, Stroke Recovery
Summary

Transcranial direct current stimulation (tDCS) has shown the potential to improve symptoms in patients with movement deficits, such as Parkinson's disease and chronic stroke. However, the effects of tDCS have so far not been proven on a wider scale due to lack of knowledge regarding exactly how tDCS works. This has limited the adoption of this potentially useful therapy for patients with Parkinson's disease, chronic stroke and other conditions affecting movement. We think that by studying the effect of tDCS on brain signals while subjects perform a virtual reality task that requires integration of visual and motor information we can separate out exactly what occurs in the brain when tDCS is turned on. We expect this approach to broaden our understanding of tDCS application in conditions affecting movement and possibly lead to therapeutic advances in this population.

Institution
MUSC
Recruitment Contact
Scott Hutchison
(843)792-2712
hutchis@musc.edu

Direct measurement of motor cortical responses to transcranial direct current stimulation Save

Date Added
May 15th, 2018
PRO Number
Pro00073545
Researcher
Nathan Rowland

List of Studies

Silhouette
Keywords
Brain, Central Nervous System, Movement Disorders, Muscle, Nerve, Nervous System, Parkinsons, Surgery
Summary

Transcranial direct current stimulation (tDCS) has shown the potential to improve symptoms in patients with motor deficits, however its effects have not been consistent in randomized studies to date, limiting widespread adoption of this technology. A critical gap in our knowledge is a detailed understanding of how tDCS affects motor areas in the brain. We propose using tDCS while recording directly from motor cortex using subdural electrocorticography (sECoG) in patients undergoing deep brain stimulation surgery. We expect this novel approach to broaden our understanding of tDCS application and possibly lead to therapeutic advances in this population.

Institution
MUSC
Recruitment Contact
Sanicqua Robinson Smalls
843-792-8553
robinsst@musc.edu

Change_preferences

-- OR --

Create_login