TRANScranial direct current stimulation for POst-stroke motor Recovery - a phase II sTudy (TRANSPORT 2)

Date Added
February 25th, 2019
PRO Number
Pro00083043
Researcher
Chris Gregory

List of Studies


Keywords
Rehabilitation Studies, Stroke, Stroke Recovery
Summary

This research is being done to find out if brain stimulation combined with a rehabilitation therapy improves arm weakness as a result of having a stroke. The stimulation technique is called transcranial direct current stimulation (tDCS). The treatment uses direct electrical currents to stimulate specific parts of the brain. The rehabilitation therapy is called "modified Constraint Induced Movement Therapy" (mCIMT). During this rehabilitation therapy study participants will wear a mitt on the hand of the arm that was not affected by their stroke. It is designed to restrain the use of the unaffected arm, while performing therapy with impaired one.
It is not known if brain stimulation combined with rehabilitation therapy will improve arm weakness. Study participants will receive rehabilitation therapy while on this study. Study participants may or may not receive the brain stimulation therapy.

Institution
MUSC
Recruitment Contact
Brenna Baker-Vogel
843-792-0651
bakebren@musc.edu

Effect of transcranial direct current stimulation on cortical oscillations during a virtual reality task

Date Added
August 20th, 2019
PRO Number
Pro00087153
Researcher
Nathan Rowland

List of Studies


Keywords
Brain, Parkinsons, Stroke, Stroke Recovery
Summary

Transcranial direct current stimulation (tDCS) has shown the potential to improve symptoms in patients with movement deficits, such as Parkinson's disease and chronic stroke. However, the effects of tDCS have so far not been proven on a wider scale due to lack of knowledge regarding exactly how tDCS works. This has limited the adoption of this potentially useful therapy for patients with Parkinson's disease, chronic stroke and other conditions affecting movement. We think that by studying the effect of tDCS on brain signals while subjects perform a virtual reality task that requires integration of visual and motor information we can separate out exactly what occurs in the brain when tDCS is turned on. We expect this approach to broaden our understanding of tDCS application in conditions affecting movement and possibly lead to therapeutic advances in this population.

Institution
MUSC
Recruitment Contact
Brenna Baker-Vogel
(843)792-0651
bakebren@musc.edu

Fibrotic Mechanisms in Systemic Sclerosis

Date Added
August 17th, 2021
PRO Number
Pro00111928
Researcher
Deanna Baker Frost

List of Studies


Keywords
Autoimmune disease, Skin
Summary

We plan to obtain skin biopsies from patients with systemic sclerosis and grow cells from biopsies. With those cells, we will use them in experiments to see why the cells from systemic sclerosis patients have more fibrosis compared to patients without systemic sclerosis.

Institution
MUSC
Recruitment Contact
Deanna Baker Frost
8437928461
bakerde@musc.edu



-- OR --